cu metoda reducerii!!! cat mai rapid!

[tex] {}^{ \sqrt{3} } \frac{x}{ \sqrt{2} } + {}^{ \sqrt{2} } \frac{y}{ \sqrt{3} } = \sqrt{6)} 1 \\ \sqrt{3} x - \sqrt{2} y = 5 \sqrt{6} \\ \\ \\ \frac{ \sqrt{3} x}{ \sqrt{6} } + \frac{ \sqrt{2}y }{ \sqrt{6} } = \frac{ \sqrt{6} }{ \sqrt{6} } | \div \sqrt{6} \\\sqrt{3} x - \sqrt{2} y = 5 \sqrt{6} \\ \\ \sqrt{3} x + \sqrt{2} y = \sqrt{6} \\ \sqrt{3} x - \sqrt{2} y = 5 \sqrt{6} \\ + \\ 2 \sqrt{3} x = 6 \sqrt{6} \\ x = 6 \sqrt{6} \div 2 \sqrt{3} \\ \boxed{x = 9 \sqrt{2}} \\ \\ \sqrt{3} x - \sqrt{2} y = 5\sqrt{6} \\ \sqrt{3} \times 9 \sqrt{2} - \sqrt{2} y = 5 \sqrt{6} \\ 9 \sqrt{6} - \sqrt{2} y = 5 \sqrt{6} \\ - \sqrt{2} y = 5 \sqrt{6} - 9 \sqrt{6} \\ - \sqrt{2} y = - 4 \sqrt{6} | \times ( - 1) \\ \sqrt{2} y = 4 \sqrt{6} \\ y = 4 \sqrt{6} \div \sqrt{2} \\ \boxed{y= 4 \sqrt{3} }[/tex]
…ᘛ⁐̤ᕐᐷฅ^•ﻌ•^ฅฅ^•ﻌ•^ฅ