Răspuns:
Explicație pas cu pas:
[tex]\bf \sqrt{\dfrac{2}{3} }+ 3\sqrt{\dfrac{2}{4} } -5\sqrt{\dfrac{2}{3} }= 3\sqrt{\dfrac{2}{4} } -4\sqrt{\dfrac{2}{3} }=[/tex]
[tex]\bf 3\dfrac{\sqrt{2}}{\sqrt{4}} -4\dfrac{\sqrt{2}}{\sqrt{3}}=3\dfrac{\sqrt{2}}{2} -4\dfrac{~^{\sqrt{3} )}\sqrt{2}}{\sqrt{3}}=[/tex]
[tex]\bf \dfrac{~^{3)}3\sqrt{2}}{2} -4\dfrac{~^{3)}\sqrt{6}}{3}=\dfrac{9\sqrt{2}}{6} -\dfrac{12\sqrt{6}}{6}=[/tex]
[tex]\bf \dfrac{9\sqrt{2}-12\sqrt{6}}{6}=\dfrac{3\cdot(3\sqrt{2}-4\sqrt{6})}{6}=[/tex]
[tex]\bf \dfrac{3\sqrt{2}-4\sqrt{6}}{2}[/tex]